Utilizando la Matriz Grande Milímetro/Metro de Atacama ([{» attribute=»»>ALMA) in Chile, researchers at Leiden Observatory in the Netherlands have for the first time detected dimethyl ether in a planet-forming disc. With nine atoms, this is the largest molecule identified in such a disc to date. It is also a precursor of larger organic molecules that can lead to the emergence of life.
“From these results, we can learn more about the origin of life on our planet and therefore get a better idea of the potential for life in other planetary systems. It is very exciting to see how these findings fit into the bigger picture,” says Nashanty Brunken, a Master’s student at Leiden Observatory, part of Leiden University, and lead author of the study published on March 8, 2022, in Astronomy & Astrophysics.
¿Cómo terminan los componentes de la vida en los planetas? El descubrimiento de la molécula más grande jamás encontrada en un disco de formación de planetas proporciona pistas sobre esto. crédito:[{» attribute=»»>ESO
Dimethyl ether is an organic molecule commonly seen in star-forming clouds, but had never before been found in a planet-forming disc. The researchers also made a tentative detection of methyl formate, a complex molecule similar to dimethyl ether that is also a building block for even larger organic molecules.
“It is really exciting to finally detect these larger molecules in discs. For a while we thought it might not be possible to observe them,” says co-author Alice Booth, also a researcher at Leiden Observatory.
The molecules were found in the planet-forming disc around the young star IRS 48 (also known as Oph-IRS 48) with the help of ALMA, an observatory co-owned by the European Southern Observatory (ESO). IRS 48, located 444 light-years away in the constellation Ophiuchus, has been the subject of numerous studies because its disc contains an asymmetric, cashew-nut-shaped “dust trap.” This region, which likely formed as a result of a newly born planet or small companion star located between the star and the dust trap, retains large numbers of millimeter-sized dust grains that can come together and grow into kilometer-sized objects like comets, asteroids and potentially even planets.
Many complex organic molecules, such as dimethyl ether, are thought to arise in star-forming clouds, even before the stars themselves are born. In these cold environments, atoms and simple molecules like carbon monoxide stick to dust grains, forming an ice layer and undergoing chemical reactions, which result in more complex molecules. Researchers recently discovered that the dust trap in the IRS 48 disc is also an ice reservoir, harboring dust grains covered with this ice rich in complex molecules. It was in this region of the disc that ALMA has now spotted signs of the dimethyl ether molecule: as heating from IRS 48 sublimates the ice into gas, the trapped molecules inherited from the cold clouds are freed and become detectable.
Este video está ampliado con el sistema Oph-IRS 48, una estrella rodeada por un disco formado por un planeta que contiene una trampa de polvo. Esta trampa permite que las partículas de polvo crezcan y multipliquen cuerpos más grandes.
«Lo que hace que esto sea aún más emocionante es que ahora sabemos que estas moléculas complejas más grandes están disponibles para alimentar a los planetas que se forman en el disco», explica Booth. «Esto no se sabía anteriormente porque estas partículas están ocultas en el hielo en la mayoría de los sistemas».
El descubrimiento del dimetil éter sugiere que muchas otras moléculas complejas que se encuentran comúnmente en las regiones de formación de estrellas también pueden estar al acecho en las estructuras heladas de los discos de formación de planetas. Estas moléculas son precursoras de moléculas prebióticas como[{» attribute=»»>amino acids and sugars, which are some of the basic building blocks of life.
By studying their formation and evolution, researchers can therefore gain a better understanding of how prebiotic molecules end up on planets, including our own. “We are incredibly pleased that we can now start to follow the entire journey of these complex molecules from the clouds that form stars, to planet-forming discs, and to comets. Hopefully, with more observations we can get a step closer to understanding the origin of prebiotic molecules in our own Solar System,” says Nienke van der Marel, a Leiden Observatory researcher who also participated in the study.
Este video está ampliado con el sistema Oph-IRS 48, una estrella rodeada por un disco formado por un planeta que contiene una trampa de polvo. Esta trampa permite que las partículas de polvo crezcan y multipliquen cuerpos más grandes.
Los estudios futuros del IRS 48 con el Extremely Large Telescope (ELT) de ESO, actualmente en construcción en Chile y cuyo inicio de operaciones está programado para fines de esta década, permitirán al equipo estudiar la química de las regiones internas del disco, donde se pueden formar planetas como la Tierra. .
Referencia: «Una gran trampa de hielo asimétrica en un disco de formación planetaria: III. Primera detección de dimetil éter» por Nasante JC Bronkin, Alice S. Booth, Margot Lemker, Bona Nazari, Ninke van der Marel y Ewen F. Van Dyschoek , 8 de marzo de 2022, Astronomía y astrofísica.
DOI: 10.1051/0004-6361/202142981
Esta publicación se lanzó el Día Internacional de la Mujer de 2022 e incluye investigaciones de seis investigadoras.
El equipo está formado por Nashanty GC Brunken (Observatorio de Leiden, Universidad de Leiden, Países Bajos) [Leiden]), Alicia S. Booth (Leiden), Margot Lemker (Leiden), Boneh Nazari (Leiden), Ninke van der Marel (Leiden), Ewen F. Van Dyschoek (Observatorio de Leiden, Instituto Max Planck para Misiones Extranjeras, Garching, Alemania)
«Pionero del café. Fanático de las redes sociales. Entusiasta de la televisión. Emprendedor amigable. Empollón zombi aficionado».